Exercices 1

Exercice 1.1

Combien de protons, neutrons et électrons y a-t-il dans un atome de ⁵⁶Fe ?

Exercice 1.2

Si la masse d'un atome d'azote est de $15 \cdot 1.67 \cdot 10^{-27}$ kg ($\cong 15$ u), quel isotope de l'azote est-ce ?

Exercice 1.3

En tenant compte des différents isotopes du carbone et de l'hydrogène, sous combien de formes différentes une molécule C_2H_2 stable peut-elle exister ? Parmi elles, combien ont des masses différentes ?

Exercice 1.4

Quel est le rapport entre la densité de l'eau H_2O et celle de l'eau lourde D_2O , étant donné que ces deux molécules ont le même volume ?

Exercice 1.5

Un atome possède 48 protons et 63 neutrons. Quel est ce nucléide?

Exercice 1.6

Quel est le numéro atomique et la masse molaire du calcium ? Quel est le numéro atomique et le nombre de masse de l'isotope le plus courant du chlore ?

Exercice 1.7

Vous avez trois échantillons inconnus, chacun provenant d'un élément différent. En utilisant un spectromètre de masse, vous trouvez que :

- L'échantillon A a trois isotopes avec des masses de 19.99 u, 20.99 u et 21.99 u.
- L'échantillon B a deux isotopes avec des masses de 34.97 u et 36.97 u.
- L'échantillon C a un isotope avec une masse de 4.00 u.

Identifiez chaque échantillon par son élément. Expliquez comment la présence de ces isotopes influence la masse atomique moyenne des éléments.

Exercice 1.8

- a) Combien de neutrons, protons et quel numéro atomique possède le nucléide ¹³C ?
- b) Combien de neutrons, protons et quel numéro atomique possède le nucléide ²³⁸U ?

c) Complétez les espaces vides à l'aide d'un tableau périodique :

Atome	Z	N	A
⁴⁰ Ar			
^{127}I			
Si			
Cs			

Exercice 1.9

Trouvez des isotopes et des isobares parmi les nucléides suivants : ¹²C, ¹³C, ¹⁴N, ¹⁴C, ³H, ³He, ¹H.

Exercice 1.10

Calculez la masse atomique moyenne du brome à partir des masses isotopiques.

Isotope	Abondance	Mass isotopique
⁷⁹ Br	50.5%	78.92 u
81 Br	49.5%	80.92 u

Exercice 1.11

Lisez attentivement chaque affirmation et déterminez si elle est vraie ou fausse.

- a) Le numéro atomique d'un élément est égal au nombre de neutrons dans son noyau. Vrai / Faux
 - b) Les isotopes d'un élément ont des propriétés chimiques différentes car ils ont un nombre différent de neutrons.

Vrai / Faux

c) Le numéro atomique détermine l'identité d'un élément.

Vrai / Faux

- d) Les isobares sont des atomes d'éléments différents ayant le même nombre de protons. Vrai / Faux
- e) Les isotopes ont le même numéro atomique mais des nombres de masse différents. Vrai / Faux
 - f) Tous les isotopes d'un élément sont stables.

Vrai / Faux

g) Les isobares ont des numéros atomiques différents mais la même masse atomique. Vrai / Faux h) Le nombre de protons dans le noyau d'un atome peut varier dans les isotopes d'un même élément.

Vrai / Faux